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SUMMARY 

The unsteady Euler equations are numerically solved using the finite volume one-step scheme recently 
developed by Ron-Ho Ni. The multiple-grid procedure of Ni is also implemented. The flows are assumed 
to be homo-enthalpic; the energy equation is eliminated and the static pressure is determined by the steady 
Bernoulli equation; a local time-step technique is used. Inflow and outflow boundaries are treated with the 
compatibility relations method of ONERA. The efficiency of the multiple-grid scheme is demonstrated by a 
two-dimensional calculation (transonic flow past the NACA 12 aerofoil) and also by a three-dimensional one 
(transonic lifting flow past the M6 wing). The third application presented shows the ability of the method to 
compute the vortical flow around a delta wing with leading-edge separation. No condition is applied at the 
leading-edge; the vortex sheets are captured in the same sense as shock waves. Results indicate that the Euler 
equations method is well suited for the prediction of flows with shock waves and contact discontinuities, the 
multiple-grid procedure allowing a substantial reduction of the computational time. 
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INTRODUCTION 

Missile aerodynamics at high angles of attack is concerned mostly with non-linear phenomena. 
Such non-linearities include mainly shock waves and vortex sheets. The Euler equations method 
is well suited for predicting those phenomena. It yields solutions with rotational flows, and gives 
the exact jump relations at discontinuities. The principal difficulty is that the Euler equations 
cannot model flow separating from a smooth surface; in particular, the formation of vortices 
above slender bodies at angle of attack cannot be predicted by the Euler equations without 
auxiliary conditions. When the flow separation occurs at a sharp edge, the starting position of 
the vortex sheet is known and the Euler method can yield realistic solutions, due to its ability 
to capture contact discontinuities in the same sense as shock waves. However, it is more difficult 
to have an accurate capture of a vortex sheet than a shock wave. The artificial dissipation 
introduced by the numerical scheme provokes a vorticity diffusion which may be greater than 
the diffusion related to the physical viscosity. The result is that the numerical solutions give a 
global modelization, rather than a precise description, of the vortex sheets. 

Owing to their simplicity in numerical implementation, the Euler equations are often solved 
using time-marching explicit procedures. Both formulations with finite differences or finite 
volumes yield accurate solutions, the second one being more suitable for three-dimensional 
calculations with mesh singularities. But, because of the stability criterion inherent in explicit 
schemes, a great number of time steps is required to reach a steady state, with, by consequence, 
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a very large computational time. Substantial improvements in convergence acceleration have 
been achieved by Jameson et ~ l . , ’ - ~  using a multi-stage finite-volume scheme, with Runge-Kutta 
time stepping. Rizzi and E r i k ~ s o n ~ - ~  have also presented computations with a three-stage 
finite-volume scheme. Another way to reduce computational time is to implement implicit 
schemes, as done for example by Lerat, Sides and D a r ~ . ~  

If only the steady state is of interest, a very efficient means is the multiple-grid technique. The 
basic idea behind multiple-grid methods is to model the conservation laws on a fine grid, in 
order to ensure the accuracy of the steady solution, while the propagation of the unsteady waves 
is modelled on coaser grids, allowing large time increments, and reduced computational work. 

Ron-Ho Ni8 has presented an explicit scheme with multiple-grid convergence acceleration for 
solving the time-dependent Euler equations. The basic scheme is a one-step Lax-Wendroff 
scheme, with finite-volume formulation; it is second order accurate in time and space. This 
scheme, like the coarse-grid procedure, is based on distribution formulae. Computations using 
Ni’s coarse-grid scheme have already been presented by for the Euler and Navier- 
Stockes equations. An alternative multigrid formulation has also been developed by J a m e ~ o n . ~ ~  

METHOD 

Governing equations 

ent halpy: 
The Euler equations are written in a pseudo-unsteady conservative form with constant total 

Here, p is the density, u, v, w are the velocity components and p is the static pressure given by 
the Bernoulli relation: 

Hi denotes the total enthalpy and y the ratio of specific heats. Uniformity of the total enthalpy 
being true only for steady states, the transient solution has no physical meaning. 

Mathematical properties of this pseudo-unsteady system have been studied at ONERA by 
Viviand and Veuillot” and Brochet,13 and will be used to implement the boundary conditions 
and also to compute the time increments. 

Basic finite-volume scheme 

eight contributions coming from the nearest-neighbouring cells having the node in common: 
At each point of the grid, the corrections 6fijk=f?S1 - f t k  are evaluated by adding the 

R 

sfijk = (bfijk)c 
c =  1 

(3) 

where subscript c denote values related to a cell. 
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Each contribution (Sfi j k ) c  is calculated by means of distribution formulae which involve 
quantities depending only on the considered cell. The establishment of these distribution formulae 
is now presented. 

The corrections 6f are given by the second order approximation 

(4) 

Time derivatives are expressed as space derivatives: 

f, = - div F 

f,, = - div F,, with F, = ( Z )  - .f,. 

( 5 )  

Equations (5) and (6) may be written in integral form for any volume V ,  bounded by 8V; using the 
mean value theorem results in 

where n is the outward unit normal to dV. Here f, and f,, are associated with some point interior to 
the volume (taken to be the volume centre for practical purposes). 

Equation (7) is discretized by a finite-volume approximation applied to the control volume 
defined by one mesh cell. The result is a value off, at the centre of the cell: 

Here V ,  is the volume of the cell; S: and S; are the outward area vectors of opposite faces 
of index I (Figure 1). 

Figure 1 .  Nomenclature of the computational mesh 
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The values off, at mesh nodes are then determined by the relation: 

The sums involve the eight cells sharing the node ijk. 
The control volume associated with the finite-volume approximation of equation (8) is a 

translated cell, whose vertices are the centres of the eight cells defined above. Inside one cell, 
the boundary of this volume is composed of three surfaces cl, 1 = i, j ,  k,  given by 

c1 = S1/4, where S, = &,(S: - S;). 

The parameter 

The finite-volume approximation of equation (8) reads then as follows: 

is equal to + 1 or - 1, so that the surface ct is always facing outwards 
(Figure 1). 

with 

Combining equations (10) and (1 1) in equation (4) gives the values of the corrections 6fijk at 
the mesh nodes. The contribution coming from the cell (denoted by subscript c )  of index (i  + 1/2, 
j + 1/2, k + 1/2) can be easily extracted: 

where 
Af, = At(f,), 

AF,, = AF;S, 1 = i, j ,  k 
AF, = (dF/df);Af,. 

Conversely, first order changes occurring in a cell are distributed to its vertices by means of eight 
distribution formulae: 

The subscript s denotes the considered vertex, and the parameters E are defined by the following 
relations: 

E~ = + 1 
ei = - 1 

for the four vertices of index i + 1, 
for the four vertices of index i, 

and so on for E~ and &k. 

the volume of a cell is computed in the following way: 
In practice, area vectors S: are computed as half the cross product of the diagonal vectors; 

- 
V, = c (CP: .s: + cp;.s;)/3, 

1 = i, j ,k  

where C is the centre of the cell, and PI  the centre of a face (Figure 1). The coordinates of these 
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points are obtained by averaging the vertex coordinates. If the faces are not planar, the 
computations of S, and Vc are not exact, but still compatible. 

The flux vectors F, are computed for each face of a cell by simple averaging of the four flux 
vectors given at  the corners of the face. The time derivative of the flux vector, AF, is not calculated 
through the costly computation of the Jacobian matrix (dF/df) but more simply by the following 
relations: 

where 

Apu2 = 2uAhpu - u2Ap, 
APUV = UAPU + VAPU - UVAP, 

Apu2 + Apv2 + Apw2 
2 

A p = -  Y- ( H i  Ap - 
Y 

The components of the velocity, (u, v, w), are calculated at the cell centre using averaged values 
for p and pV which are given at the cell vertices at iteration n. 

We may notice that this scheme is rigorously conservative when the time increments At are 
associated with the mesh nodes. If we wish to use the local time-step technique, the distribution 
formulae lead us to use time steps associated with the mesh cells; in this case, the scheme is no 
longer strictly conservative. The weighting of the distribution formulae by the volumes may also 
be suppressed; the distribution formulae become then 

1 At (&iAFiC + &jAFj, + &kAFk,) . 

If At/K is constant, the scheme is again strictly conservative. In this paper, all the computations 
have been performed using equation (16) and the local time-step technique. 

Time increment calculation 

The time increment At is limited in magnitude by the Courant-Friedrichs-Lewy stability 
criterion. At each mesh cell, the maximum allowable time step is given by 

At = min (Atl), 
I = i ,  j , k  

with 

V is the velocity vector at the cell center, and a the speed of sound. 

(17) 

Smoothing 

Artificial viscosity is required for the computation of flow with large gradients (shocks mainly). 
A linear model of second order is used; it is simply composed of a Laplace operator V2 discretized 
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with 27 points, as the basic scheme. Smoothing is applied when updating the unknowns: 

(18) f n + 1  - f n + l  
smooth - + 40V2(f"). 

For 2D calculations, a dissipation model very similar to that of Jameson7 is used. It is composed 
of a non-linear second-order term, and a linear fourth-order term. The non-linear term is 
written as (for the index i only): 

Usual values for yoand y1 are 0.01 and 0.1 

Boundary conditions 

Mesh nodes belonging to a boundary receive information coming only from four, two or even 
one cell. Since no extrapolation is used, second order accuracy in space may be lost. 
Complementary information is given by the boundary conditions. 

Inflow and outflow boundaries. The compatibility relations technique developed at 

At a supersonic inflow boundary, all the variables are set to the free-stream values; on the 
ONERA"2-'4 is used. 

other hand, if the upstream flow is subsonic, three boundary conditions must be specified: 

total pressure pi = pim, 
velocity direction v/u = (v/u),. 

At a supersonic outflow boundary, no condition is required; and if the flow is subsonic, one 
condition is necessary; in 2D cases, we set the static pressure to its free-stream value, and in 3D 
cases, we use the following non-reflective condition: 

pt  + P c - ( u n ) t = O  

where un is the velocity component normal to the boundary, and C- is given by: 

Solid walls. Fluxes corresponding to a surface fitted with a solid wall are computed by taking 
into account only the pressure term. Then, at the end of the distribution formulae step, the 
velocity component normal to the wall is set to zero: 

= vs - (V"NN)N. (21) 
vs is the velocity given by the scheme, and N the unit normal to the wall. 

Coordinate cuts. Treatment for these boundaries is very simple: contributions coming from 
cells located on either sides of the cut are summed to give the corrections at the nodes of the 
cut, so discretization continuity is recovered. 

Symmetry planes. Symmetry planes may be considered as solid walls; an improved treatment 
has been used for the present computations, which consists of accounting for additional 
contributions defined by mirror conditions, thus, second order in space is maintained. 
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Multiple-grid procedure 

The Euler equations are solved numerically on the coarse grid using an integration method 
similar to that of the fine grid. The main feature of the coarse-grid procedure is to approximate first 
order time derivatives by means of a complete time iteration of the basic scheme (instead of 
discretizing equation (5)). Second order time derivatives are then obtained by a coarse-grid 
discretization of equation (6), and, lastly, the corrections Sf are calculated at the coarse-grid nodes 
using equation (4). Transfer of information between two grids is achieved by the restriction 
operator (fine to coarse) and the prolongation operator (coarse to fine). 

General structure of the two-grid method. First, let us denote by h and H the typical mesh 
sizes of the fine and coarse grids; the basic integration method is represented by the operator 
Qh(Qh includes the basic finite-volume scheme, artificial viscosity and the boundary conditions); 
the restriction and prolongation operators are noted by Rif  and P k .  

The two-grid method reads as shown in Table I. At is the fine-grid time step; w may be 
considered as an over-relaxation factor, which allows an improvement of the convergence. The 
stability of the complete algorithm has been studied by the author,I5 by means of a Fourier 
mode analysis. The resulting optimal values for w and p are 1.7 and 1.4. 

Numerical implementation of the multiple-grid procedure 

Coarse grids 

Each coarse grid is obtained from the previous one by deleting the mesh surfaces whose index 
is even, thus, we have H = 2h, and, in three-dimensional cases, the number of cells is divided by 
eight from a grid to the next coarser one. Specific mesh surfaces, such as boundaries or surfaces 
including leading or trailing edges, must be present in each grid. 

Restriction operator R i h  

yields values for Af,"h at the centres of the cells defined by the grid 2h: 
In order to have a coarse-grid procedure similar to the basic one, the restriction operator 

AfZh = AtRihrh (22) 
Best results have been obtained when using for R;h the 'full weighting' operator, which 

Table I 

f (0)  = f n  

f ( 1 )  ~ Qhf(0) 

rh = (f'') - f(*))/At 
f: = Rfr, 

f:: = -vH - . fN  

6fH = co(Atf: + pAt2ff )  
f (2 )  = f ( 1 )  + ph H 6 f H  
f n  6 1 = f (2 )  

Solution at iteration It, basic grid 
Basic integration method 
Fine-grid residual 
Restriction h --$ H 

V, = divergence operator, discretized on H 

Coarse-grid correction 
Prolongation H --+ h; update the solution 
Solution at iteration n + 1 

(: 4 
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Table I1 

f W  = fn  

f'" =: f'0) + 6f h 

Solution at iteration n, basic grid 
Fine grid integration method 
Grid 2h 
Grid 4h 
Solution at iteration n + 1 

f'2' =: f'" + ph 2h 6f 2h 

f'3' = f'2' + ph 4 h  6f 4 h  
p+1- - f  (31 

involves all the residuals of the fine-grid points defining the coarse-grid cell. This operator is 
composed of two averaging operators, whose coefficients are constants independent of the mesh. 

Coarse-grid corrections 

The coarse-grid corrections are computed using the same procedure as for the basic scheme; 
that is to say, coarse-grid corrections are given by means of distribution formulae expressed for 
the grid 2h (with the notations of equation (16)): 

At 
(QAF;~ + E~AF~: + E ~ A F ~ ~ )  

Prolongation operator PhZh 

A linear interpolation operator is used; pih may be split into three elementary operators 
corresponding to the indices of the mesh. Each of these operators is linear, with constant 
coefficients, equal to 1/2. In the case of stretched meshes, it has been found that constant 
coefficients give better results than coefficients involving the distances between the nodes. 

Three-grid (and more) procedure 

The three-grid procedure runs as shown in Table 11. 
The basic integration method is applied only to the fine grid; then, for each level of coarse-grid, 

(a) restriction of residuals from the previous grid 
(b) distribution formulae 
(c) prolongation of corrections to the fine grid 
(d) update of the solution. 

the procedure used is composed of 

RESULTS 

Two-dimensional case, N A C A  12, M ,  = 0.85, tl = 1" 

The effectiveness of the multiple-grid procedure has been tested in the case of a transonic 
flow past the NACA 12 aerofoil, for the conditions M ,  = 0.85, a =  1". The mesh is composed of 
193 x 33 points, 145 points being located on the profile (Figure 2). 

For all the computations, uniform flow with the far upstream properties is taken as initial 
condition; convergence is judged by plotting the evolution of the lift coefficient C,, and also the 
maximum value of Apu/At  against the number of work units (Figure 3(a)). Here the work unit is 
defined as the computational work required for one iteration of the basic method. 
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Figure 2. NACA 12 computational mesh (193 x 33) 

Table 111. NACA 12 aerofoil; M = 0.85, CI = 1 @ 

Calculation 1 2 3 

Number of iterations 
Number of grids 

Lift coefficient 
Drag coefficient 
lA /4Af l" ,ax  
IAPdAtIrrns 
Work units for 
one iteration 

10,000 2000 2000 
1 3 250 iterations, 4 grids 

(basic scheme) H-2W-4H 1750 iterations, 3 grids 
0.3322 0.3323 0.3323 
0.0493 0.0493 0.0493 

2.0 1 0 - 5  5.8 10-7 8.4 x lo-' 
1.5 x 10- ' 4.7 x l o M 8  6.7 x 10-9 

1 I .30 1.33 

Three calculations have been made, the main results are given Table 111. 
In this case, the computational work is divided by 6 when using the multiple-grid strategy of 

calculation number 3, the number of iterations required for having the same residuals as obtained 
at the end of calculation number 1 being equal to 1300. Figure 3(c) presents the isomach contours; 
total pressure loss and Mach number distribution on the profile are given in Figures 3(b) and 3(d). 
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Figure 3. Transonic flow past the NACA 12 aerofoil; M = 0.85, CY = 1": (a) convergence history; (b) total pressure loss; 
(d)isomach lines (interval = 0.05); (d) Mach number distribution 

Three-dimensional case, O N E R A  M 6  wing, M ,  = 0.84, a =  3.06" 

Transonic flow past the M6 wing is computed, first using three grids (H-2H-4H), and then 
without multiple-grid capability (-H-). A mesh system of C-0 type has been developed, which 
discretizes finely the rounded tip of the wing (Figure4). The mesh is composed of 53 x 49 x 17 
nodes, with 37 x 49 points of the wing. Two singular lines are present in the mesh, where hexahedra 
degenerate into prisms; thanks to the finite-volume formulation, no special treatment is applied to 
those cells, even during the multiple-grid procedure. Only the linear second order dissipation is 
used; we must note that this dissipation model is too rudimentary and a more sophisticated model 
(as used in 2D) will be necessary. For these two calculations, uniform flow is taken as an initial 
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Figure 4. M6 wing-oblique view of the C - 0  mesh 

Figure 5. M6 wing, M = 0.84, a = 3.06”; convergence history 

493 
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TabIe IV. M6 wing, M = 0.84, CL = 3.06" 

Calculation 1 2 3 

Number of iterations 
Number of grids 
Dissipation coefficient 
Lift 
Drag 
Averaged error 
Maximum error 
Work units for 
one iteration 

700 
3 

0.013 
0.280 
0.0122 

1.4 x 
2.8 x 10-5 

1.20 

1500 
1 

0.013 
0.278 
0.0122 

1.3 x 
3.6 x 10--5 

1 

400 
3 

0.009 
0.285 
0*0120 

1.3 x 
2.9 x 10-5 

1.20 

Figure 6. Transonic flow past the M6 wing; M = 044, CI = 3.06": (a) isobars of normalized pressure 1 - p / P t ;  (b) total 
pressure loss at Y / B  = 0.80; (c) total pressure loss contours (interval = 0.01); (d) computed streamlines 
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condition; multiple-grid convergence speeding-up is shown in Figure 5 where the lift coefficient and 
the averaged error are plotted against the number of work units. Averaged error is defined by: 

For this test case, the computational time is divided approximately by 2 when using the multiple- 
grid procedure; we do not have the same effectiveness as for the two-dimensional case; this may be 
due to the fact that the basic mesh used for this 3D case is rather coarse. 

Figure 7. C, distribution on the M6 wing; M = 0.84, ct = 3.06": present method (53 x 49 x 17 grid); -------- 
MacCormack scheme (57 x 50 x 19 grid); .... experiment'* 



Figure 8. Dillner wing; computation mesh (a)oblique view of the C-0 mesh; (b)pIanar view of the mesh surface i = 30 
( X / C  = 0.8) 
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A third calculation is made with a smaller dissipation coefficient; the solution at the end of the 
calculation number 1 is taken as the initial condition. The main results concerning these three 
computations are summarized in Table IV. 

The results presented now correspond to the third calculation. Figure 6(a) shows the isobar 
contours on the upper surface of the wing; the well known lambda shock pattern pertinent to the 
M6 wing can be seen. Comparison of the C, distributions with another Euler method using the 
explicit scheme of MacCormack14 does not point out notable differences (Figure 7). On the other 
hand, the total pressure loss (Figures 6(b) and 6(c)) seems to depend rather strongly on the method; 
in addition to the fact that the two schemes do not have the same properties, the artificial 
dissipation models are also quite different (the non-linear second-order and linear fourth-order 
dissipation is used with MacCormack's scheme). In Figure 6(d), the computed streamlines show a 
small vortex emanating from the wing tip. 

Three-dimensional case, Dillner wing M ,  = 0.7, OL = 15" 

The Dillner wing is a Delta wing, with a sharp leading edge which is swept 70"; chordwise 
sections are 6 per cent thick circular arcs. A mesh system of C-0  type is used (Figure 8); it is 
composed of 45 x 57 x 17 nodes, with 37 x 57 points on the wing. The linear dissipation model is 
used; this model was found to have too large an influence on the vorticity diffusion in the vortex, so 
we have set its coefficient to a very low value, except for some points very close to the leading edge, 
where the flow separation induces spurious oscillations. The calculation is carried out with three 
grids (H-2H-4H); the initial condition corresponds to the undisturbed uniform flow. The 
computed flow separates at the leading edge (no condition is applied there), and an important 
vortex is formed above the upper surface of the wing. A qualitative description of the vortical 
structure of the flow is given in Figure 9. The leading-edge vortex is clearly revealed Figure 9(a) 
where the (v, w) components of the velocity vector are plotted for X / C  = 0.80. Total pressure loss 
contours for the same section show that this loss is maximum in the vortex core (25 per cent of the 
upstream total pressure). Non-physical phenomena, such as entropy production at the leading 
edge and vorticity diffusion due to the artificial dissipation are suspected to be responsible for these 
total pressure distributions, which look like those observed experimentally by Hummel.16 Figure 
9(b) gives indications on the solution in a cross-flow plane located downstream of the wing 
( X / C  = 1.15). A second vortex appears, corresponding to the trailing-edge wake rolling up; it is 
interesting to note that the maximum total pressure loss in the leading-edge vortex has not 
changed. Velocity components normal to the free-stream direction are also plotted in Figure 9(b), 
and show the double-vortex structure behind the wing. 

Quantitative results concerning the interaction between the vortex and the upper surface of the 
wing are presented Figure 10. Isomach contours (Figure lO(a) and (10(b)) indicate that the flow 
accelerates through supersonic speeds; the maximum depression is encountered in the vortex core, 
at the same point as the maximum total pressure loss; Figure 10(e) shows that the total pressure loss 
on the wing remains low, except in the neighbourhood on the separation point, where very large 
oscillations can be seen. The C, distribution on the wing, at X / C  = 0.8, shows the suction peak due 
to the vortex (Figure lO(f)). Comparison with experimental values points out two principal 
differences: the computed maximum value of C, is greater (by ten per cent) than the experimental 
value; the computed position of the peak is closer to the leading-edge. Analogous results have been 
obtained by Hoeijmaker~, '~ who uses a panel method. Experiments have shown that viscous 
effects are important in vortical flows; in particular, they are responsible for the formation of 
secondary vortices which, of course, cannot be predicted by an inviscid gas model (and which may 
explain why the computed primary vortex lies near the leading edge). 
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Figure 9. Vortex flow around the Dillner wing; M = 0.7, CI = 15": (a) total pressure loss and cross-flow velocities (wing 
co-ordinates) at XjC = 0.80; (b) total pressure loss and cross-flow velocities (free-stream co-ordinates) at X / C  = 1.15; 

(c) computed streamlines 
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Figure 10 Dillner wing; M = 0.7, a = 15": (a)isomach lines on the upper surface; (b)isomach lines at X j C  = 0.8; (c) isobars 
of normalized pressure on the upper surface, CI, = 0-1 71, C, = 0.678; (d) isobars at  X / C  = 0.8; (e)  total pressure loss on the 

wing at X / C  = 0.8; (f) C, distribution on the wing at X / C  = 0.8 
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CONCLUSION 

The multiple-grid scheme of Ni has been used for the computation of three-dimensional flows, and 
it has given good results. Using the multiple-grid procedure leads to reductions of the 
computational time by a factor 2 or 3 in the three-dimensional cases; this factor can reach values up 
to 6 for two-dimensional computations with fine basic meshes; in addition, the numerical 
implementation of this method was found to be easy. The computational time per grid point and 
per iteration for the basic finite-volume scheme is approximatively the same as for the two-step 
explicit scheme of MacCormack; the additional cost due to the multiple-grid procedure is about 20 
per cent for the three-dimensional code. 

The ability for the Euler method to compute vortical flows past wings at large angles of attack is 
shown by the results concerning the Dillner wing; however, an accurate capturing of the vortex 
sheets remains a difficulty, and a great number of mesh nodes seems to be necessary. In any case, 
non-physical phenomena are present in the computed solutions; they are related to the numerical 
discretization of the Euler equations and to the artificial dissipation model; when those effects are 
small enough, the Euler equations method can give satisfactory global description of vortical flows. 
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